7,893 research outputs found

    Heat transport and spin-charge separation in the normal state of high temperature superconductors

    Full text link
    Hill et al. have recently measured both the thermal and charge conductivities in the normal state of a high temperature superconductor. Based on the vanishing of the Wiedemann-Franz ratio in the extrapolated zero temperature limit, they conclude that the charge carriers in this material are not fermionic. Here I make a simple observation that the prefactor in the temperature dependence of the measured thermal conductivity is unusually large, corresponding to an extremely small energy scale T0≈0.15T_0 \approx 0.15 K. I argue that T0T_0 should be interpreted as a collective scale. Based on model-independent considerations, I also argue that the experiment leads to two possibilities: 1) The charge-carrying excitations are non-fermionic. And much of the heat current is in fact carried by distinctive charge-neutral excitations; 2) The charge-carrying excitations are fermionic, but a subtle ordering transition occurs at T0T_0.Comment: 3 pages, 1 figur

    Probing spin-charge separation using spin transport

    Full text link
    Pedagogical discussions are given on what constitutes a signature of spin-charge separation. A proposal is outlined to probe spin-charge separation in the normal state of the high TcT_c cuprates using spin transport. Specifically, the proposal is to compare the temperature dependences of the spin resistivity and electrical resistivity: Spin-charge separation will be manifested in the different temperature dependences of these two resistivities. We also estimate the spin diffusion length and spin relaxation time scales, and we argue that it should be experimentally feasible to measure the spin transport properties in the cuprates using the spin-injection technique. The on-going spin-injection experiments in the cuprates and related theoretical issues are also discussed.Comment: Talk given at M2S-HTSC-VI, 4 page

    Computational Development for Secondary Structure Detection From Three-Dimensional Images of Cryo-Electron Microscopy

    Get PDF
    Electron cryo-microscopy (cryo-EM) as a cutting edge technology has carved a niche for itself in the study of large-scale protein complex. Although the protein backbone of complexes cannot be derived directly from the medium resolution (5-10 Å) of amino acids from three-dimensional (3D) density images, secondary structure elements (SSEs) such as alpha-helices and beta-sheets can still be detected. The accuracy of SSE detection from the volumetric protein density images is critical for ab initio backbone structure derivation in cryo-EM. So far it is challenging to detect the SSEs automatically and accurately from the density images at these resolutions. This dissertation presents four computational methods - SSEtracer, SSElearner, StrandTwister and StrandRoller for solving this critical problem. An effective approach, SSEtracer, is presented to automatically identify helices and β- sheets from the cryo-EM three-dimensional maps at medium resolutions. A simple mathematical model is introduced to represent the β-sheet density. The mathematical model can be used for β-strand detection from medium resolution density maps. A machine learning approach, SSElearner, has also been developed to automatically identify helices and β-sheets by using the knowledge from existing volumetric maps in the Electron Microscopy Data Bank (EMDB). The approach has been tested using simulated density maps and experimental cryo-EM maps of EMDB. The results of SSElearner suggest that it is effective to use one cryo-EM map for learning in order to detect the SSE in another cryo-EM map of similar quality. Major secondary structure elements such as a-helices and β-sheets can be computationally detected from cryo-EM density maps with medium resolutions of 5-10Å. However, a critical piece of information for modeling atomic structures is missing, since there are no tools to detect β-strands from cryo-EM maps at medium resolutions. A new method, StrandTwister, has been proposed to detect the traces of β-strands through the analysis of twist, an intrinsic nature of β-sheet. StrandTwister has been tested using 100 β-sheets simulated at 10Å resolution and 39 β-sheets computationally detected from cryoEM density maps at 4.4-7.4Å resolutions. StrandTwister appears to detect the traces of β-strands on major β-sheets quite accurately, particularly at the central area of a β-sheet. β-barrel is a structure feature that is formed by multiple β-strands in a barrel shape. There is no existing method to derive the β-strands from the 3D image of β-barrel. A new method, StrandRoller, has been proposed to generate small sets of possible β-traces from the density images at medium resolutions of 5-10Å. The results of StrandRoller suggest that it is possible to derive a small set of possible β-traces from the β-barrel cryo-EM image at medium resolutions even when it is not possible to visualize the separation of β-strands

    Neural Sampling in Hierarchical Exponential-family Energy-based Models

    Full text link
    Bayesian brain theory suggests that the brain employs generative models to understand the external world. The sampling-based perspective posits that the brain infers the posterior distribution through samples of stochastic neuronal responses. Additionally, the brain continually updates its generative model to approach the true distribution of the external world. In this study, we introduce the Hierarchical Exponential-family Energy-based (HEE) model, which captures the dynamics of inference and learning. In the HEE model, we decompose the partition function into individual layers and leverage a group of neurons with shorter time constants to sample the gradient of the decomposed normalization term. This allows our model to estimate the partition function and perform inference simultaneously, circumventing the negative phase encountered in conventional energy-based models (EBMs). As a result, the learning process is localized both in time and space, and the model is easy to converge. To match the brain's rapid computation, we demonstrate that neural adaptation can serve as a momentum term, significantly accelerating the inference process. On natural image datasets, our model exhibits representations akin to those observed in the biological visual system. Furthermore, for the machine learning community, our model can generate observations through joint or marginal generation. We show that marginal generation outperforms joint generation and achieves performance on par with other EBMs.Comment: NeurIPS 202

    Tracing Beta Strands Using StrandTwister from Cryo-EM Density Maps at Medium Resolutions

    Get PDF
    Major secondary structure elements such as α helices and β sheets can be computationally detected from cryoelectron microscopy (cryo-EM) density maps with medium resolutions of 5–10 A˚ . However, a critical piece of information for modeling atomic structures is missing, because there are no tools to detect β strands from cryo-EM maps at medium resolutions. We propose a method, StrandTwister, to detect the traces of β strands through the analysis of twist, an intrinsic nature of a β sheet. StrandTwister has been tested using 100 β sheets simulated at 10 A˚ resolution and 39 β sheets computationally detected from cryo-EM density maps at 4.4–7.4 A˚ resolutions. Although experimentally derived cryoEMmaps contain errors, StrandTwister’s best detections over 39 cases were able to detect 81.87% of the β strands, with an overall 1.66 A˚ two-way distance between the detected and observed β traces. StrandTwister appears to detect the traces of β strands on major β sheets quite accurately, particularly at the central area of a β sheet
    • …
    corecore